TSTP Solution File: SYN389^4 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : SYN389^4 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp
% Command  : do_cvc5 %s %d

% Computer : n026.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri Sep  1 02:02:55 EDT 2023

% Result   : Theorem 0.20s 0.54s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem    : SYN389^4 : TPTP v8.1.2. Released v4.0.0.
% 0.00/0.14  % Command    : do_cvc5 %s %d
% 0.18/0.34  % Computer : n026.cluster.edu
% 0.18/0.34  % Model    : x86_64 x86_64
% 0.18/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.18/0.34  % Memory   : 8042.1875MB
% 0.18/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.18/0.34  % CPULimit   : 300
% 0.18/0.34  % WCLimit    : 300
% 0.18/0.34  % DateTime   : Sat Aug 26 18:08:48 EDT 2023
% 0.18/0.35  % CPUTime    : 
% 0.20/0.48  %----Proving TH0
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  % File     : SYN389^4 : TPTP v8.1.2. Released v4.0.0.
% 0.20/0.49  % Domain   : Logic Calculi (Intuitionistic logic)
% 0.20/0.49  % Problem  : Pierce's Law
% 0.20/0.49  % Version  : [Goe33] axioms.
% 0.20/0.49  % English  :
% 0.20/0.49  
% 0.20/0.49  % Refs     : [Goe33] Goedel (1933), An Interpretation of the Intuitionistic
% 0.20/0.49  %          : [Gol06] Goldblatt (2006), Mathematical Modal Logic: A View of
% 0.20/0.49  %          : [ROK06] Raths et al. (2006), The ILTP Problem Library for Intu
% 0.20/0.49  %          : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% 0.20/0.49  %          : [BP10]  Benzmueller & Paulson (2009), Exploring Properties of
% 0.20/0.49  % Source   : [Ben09]
% 0.20/0.49  % Names    :
% 0.20/0.49  
% 0.20/0.49  % Status   : CounterCounterSatisfiable
% 0.20/0.49  % Rating   : 1.00 v8.1.0, 0.80 v7.5.0, 0.60 v7.4.0, 0.75 v7.2.0, 0.67 v6.2.0, 0.33 v5.4.0, 1.00 v5.0.0, 0.33 v4.1.0, 0.00 v4.0.0
% 0.20/0.49  % Syntax   : Number of formulae    :   44 (  20 unt;  22 typ;  19 def)
% 0.20/0.49  %            Number of atoms       :   75 (  19 equ;   0 cnn)
% 0.20/0.49  %            Maximal formula atoms :   12 (   3 avg)
% 0.20/0.49  %            Number of connectives :   66 (   3   ~;   1   |;   2   &;  58   @)
% 0.20/0.49  %                                         (   0 <=>;   2  =>;   0  <=;   0 <~>)
% 0.20/0.49  %            Maximal formula depth :    9 (   2 avg)
% 0.20/0.49  %            Number of types       :    2 (   0 usr)
% 0.20/0.49  %            Number of type conns  :   97 (  97   >;   0   *;   0   +;   0  <<)
% 0.20/0.49  %            Number of symbols     :   27 (  25 usr;   4 con; 0-3 aty)
% 0.20/0.49  %            Number of variables   :   40 (  31   ^;   7   !;   2   ?;  40   :)
% 0.20/0.49  % SPC      : TH0_CSA_EQU_NAR
% 0.20/0.49  
% 0.20/0.49  % Comments : This is an ILTP problem embedded in TH0
% 0.20/0.49  %          : In classical logic this is a Theorem.
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %----Modal Logic S4 in HOL
% 0.20/0.49  %----We define an accessibility relation irel
% 0.20/0.49  thf(irel_type,type,
% 0.20/0.49      irel: $i > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  %----We require reflexivity and transitivity for irel
% 0.20/0.49  thf(refl_axiom,axiom,
% 0.20/0.49      ! [X: $i] : ( irel @ X @ X ) ).
% 0.20/0.49  
% 0.20/0.49  thf(trans_axiom,axiom,
% 0.20/0.49      ! [X: $i,Y: $i,Z: $i] :
% 0.20/0.49        ( ( ( irel @ X @ Y )
% 0.20/0.49          & ( irel @ Y @ Z ) )
% 0.20/0.49       => ( irel @ X @ Z ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----We define S4 connective mnot (as set complement)
% 0.20/0.49  thf(mnot_decl_type,type,
% 0.20/0.49      mnot: ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mnot,definition,
% 0.20/0.49      ( mnot
% 0.20/0.49      = ( ^ [X: $i > $o,U: $i] :
% 0.20/0.49            ~ ( X @ U ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----We define S4 connective mor (as set union) 
% 0.20/0.49  thf(mor_decl_type,type,
% 0.20/0.49      mor: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mor,definition,
% 0.20/0.49      ( mor
% 0.20/0.49      = ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
% 0.20/0.49            ( ( X @ U )
% 0.20/0.49            | ( Y @ U ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----We define S4 connective mand (as set intersection) 
% 0.20/0.49  thf(mand_decl_type,type,
% 0.20/0.49      mand: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mand,definition,
% 0.20/0.49      ( mand
% 0.20/0.49      = ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
% 0.20/0.49            ( ( X @ U )
% 0.20/0.49            & ( Y @ U ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----We define S4 connective mimpl 
% 0.20/0.49  thf(mimplies_decl_type,type,
% 0.20/0.49      mimplies: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mimplies,definition,
% 0.20/0.49      ( mimplies
% 0.20/0.49      = ( ^ [U: $i > $o,V: $i > $o] : ( mor @ ( mnot @ U ) @ V ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----Definition of mbox_s4; since irel is reflexive and transitive, 
% 0.20/0.49  %----it is easy to show that the K and the T axiom hold for mbox_s4
% 0.20/0.49  thf(mbox_s4_decl_type,type,
% 0.20/0.49      mbox_s4: ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mbox_s4,definition,
% 0.20/0.49      ( mbox_s4
% 0.20/0.49      = ( ^ [P: $i > $o,X: $i] :
% 0.20/0.49          ! [Y: $i] :
% 0.20/0.49            ( ( irel @ X @ Y )
% 0.20/0.49           => ( P @ Y ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----Intuitionistic Logic in Modal Logic S4
% 0.20/0.49  %----Definition of iatom: iatom P = P
% 0.20/0.49  %----Goedel maps atoms to atoms
% 0.20/0.49  thf(iatom_type,type,
% 0.20/0.49      iatom: ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(iatom,definition,
% 0.20/0.49      ( iatom
% 0.20/0.49      = ( ^ [P: $i > $o] : P ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----Definition of inot: inot P = mnot (mbox_s4 P) 
% 0.20/0.49  thf(inot_type,type,
% 0.20/0.49      inot: ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(inot,definition,
% 0.20/0.49      ( inot
% 0.20/0.49      = ( ^ [P: $i > $o] : ( mnot @ ( mbox_s4 @ P ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----Definition of true and false
% 0.20/0.49  thf(itrue_type,type,
% 0.20/0.49      itrue: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(itrue,definition,
% 0.20/0.49      ( itrue
% 0.20/0.49      = ( ^ [W: $i] : $true ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(ifalse_type,type,
% 0.20/0.49      ifalse: $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(ifalse,definition,
% 0.20/0.50      ( ifalse
% 0.20/0.50      = ( inot @ itrue ) ) ).
% 0.20/0.50  
% 0.20/0.50  %----Definition of iand: iand P Q = (mand P Q)
% 0.20/0.50  thf(iand_type,type,
% 0.20/0.50      iand: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(iand,definition,
% 0.20/0.50      ( iand
% 0.20/0.50      = ( ^ [P: $i > $o,Q: $i > $o] : ( mand @ P @ Q ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %----Definition of ior: ior P Q = (mor (mbox_s4 P) (mbox_s4 Q))
% 0.20/0.50  thf(ior_type,type,
% 0.20/0.50      ior: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(ior,definition,
% 0.20/0.50      ( ior
% 0.20/0.50      = ( ^ [P: $i > $o,Q: $i > $o] : ( mor @ ( mbox_s4 @ P ) @ ( mbox_s4 @ Q ) ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %----Definition of iimplies: iimplies P Q = 
% 0.20/0.50  %---- (mimplies (mbox_s4 P) (mbox_s4 Q))
% 0.20/0.50  thf(iimplies_type,type,
% 0.20/0.50      iimplies: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(iimplies,definition,
% 0.20/0.50      ( iimplies
% 0.20/0.50      = ( ^ [P: $i > $o,Q: $i > $o] : ( mimplies @ ( mbox_s4 @ P ) @ ( mbox_s4 @ Q ) ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %----Definition of iimplied: iimplied P Q = (iimplies Q P)
% 0.20/0.50  thf(iimplied_type,type,
% 0.20/0.50      iimplied: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(iimplied,definition,
% 0.20/0.50      ( iimplied
% 0.20/0.50      = ( ^ [P: $i > $o,Q: $i > $o] : ( iimplies @ Q @ P ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %----Definition of iequiv: iequiv P Q = 
% 0.20/0.50  %---- (iand (iimplies P Q) (iimplies Q P))
% 0.20/0.50  thf(iequiv_type,type,
% 0.20/0.50      iequiv: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(iequiv,definition,
% 0.20/0.50      ( iequiv
% 0.20/0.50      = ( ^ [P: $i > $o,Q: $i > $o] : ( iand @ ( iimplies @ P @ Q ) @ ( iimplies @ Q @ P ) ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %----Definition of ixor: ixor P Q = (inot (iequiv P Q)
% 0.20/0.50  thf(ixor_type,type,
% 0.20/0.50      ixor: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(ixor,definition,
% 0.20/0.50      ( ixor
% 0.20/0.50      = ( ^ [P: $i > $o,Q: $i > $o] : ( inot @ ( iequiv @ P @ Q ) ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %----Definition of validity
% 0.20/0.50  thf(ivalid_type,type,
% 0.20/0.50      ivalid: ( $i > $o ) > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(ivalid,definition,
% 0.20/0.50      ( ivalid
% 0.20/0.50      = ( ^ [Phi: $i > $o] :
% 0.20/0.50          ! [W: $i] : ( Phi @ W ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %----Definition of satisfiability
% 0.20/0.50  thf(isatisfiable_type,type,
% 0.20/0.50      isatisfiable: ( $i > $o ) > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(isatisfiable,definition,
% 0.20/0.50      ( isatisfiable
% 0.20/0.50      = ( ^ [Phi: $i > $o] :
% 0.20/0.50          ? [W: $i] : ( Phi @ W ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %----Definition of countersatisfiability
% 0.20/0.50  thf(icountersatisfiable_type,type,
% 0.20/0.50      icountersatisfiable: ( $i > $o ) > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(icountersatisfiable,definition,
% 0.20/0.50      ( icountersatisfiable
% 0.20/0.50      = ( ^ [Phi: $i > $o] :
% 0.20/0.50          ? [W: $i] :
% 0.20/0.50            ~ ( Phi @ W ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %----Definition of invalidity
% 0.20/0.50  thf(iinvalid_type,type,
% 0.20/0.50      iinvalid: ( $i > $o ) > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(iinvalid,definition,
% 0.20/0.50      ( iinvalid
% 0.20/0.50      = ( ^ [Phi: $i > $o] :
% 0.20/0.50          ! [W: $i] :
% 0.20/0.50            ~ ( Phi @ W ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %------------------------------------------------------------------------------
% 0.20/0.50  %------------------------------------------------------------------------------
% 0.20/0.50  thf(p_type,type,
% 0.20/0.50      p: $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(q_type,type,
% 0.20/0.50      q: $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(pel8,conjecture,
% 0.20/0.50      ivalid @ ( iimplies @ ( iimplies @ ( iimplies @ ( iatom @ p ) @ ( iatom @ q ) ) @ ( iatom @ p ) ) @ ( iatom @ p ) ) ).
% 0.20/0.50  
% 0.20/0.50  %------------------------------------------------------------------------------
% 0.20/0.50  ------- convert to smt2 : /export/starexec/sandbox/tmp/tmp.Fs6dK90cws/cvc5---1.0.5_31880.p...
% 0.20/0.50  (declare-sort $$unsorted 0)
% 0.20/0.50  (declare-fun tptp.irel ($$unsorted $$unsorted) Bool)
% 0.20/0.50  (assert (forall ((X $$unsorted)) (@ (@ tptp.irel X) X)))
% 0.20/0.50  (assert (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (let ((_let_1 (@ tptp.irel X))) (=> (and (@ _let_1 Y) (@ (@ tptp.irel Y) Z)) (@ _let_1 Z)))))
% 0.20/0.50  (declare-fun tptp.mnot ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mnot (lambda ((X (-> $$unsorted Bool)) (U $$unsorted)) (not (@ X U)))))
% 0.20/0.50  (declare-fun tptp.mor ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mor (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (or (@ X U) (@ Y U)))))
% 0.20/0.50  (declare-fun tptp.mand ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mand (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (and (@ X U) (@ Y U)))))
% 0.20/0.50  (declare-fun tptp.mimplies ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mimplies (lambda ((U (-> $$unsorted Bool)) (V (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot U)) V) __flatten_var_0))))
% 0.20/0.54  (declare-fun tptp.mbox_s4 ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.mbox_s4 (lambda ((P (-> $$unsorted Bool)) (X $$unsorted)) (forall ((Y $$unsorted)) (=> (@ (@ tptp.irel X) Y) (@ P Y))))))
% 0.20/0.54  (declare-fun tptp.iatom ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.iatom (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ P __flatten_var_0))))
% 0.20/0.54  (declare-fun tptp.inot ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.inot (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ tptp.mbox_s4 P)) __flatten_var_0))))
% 0.20/0.54  (declare-fun tptp.itrue ($$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.itrue (lambda ((W $$unsorted)) true)))
% 0.20/0.54  (declare-fun tptp.ifalse ($$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.ifalse (@ tptp.inot tptp.itrue)))
% 0.20/0.54  (declare-fun tptp.iand ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.iand (lambda ((P (-> $$unsorted Bool)) (Q (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand P) Q) __flatten_var_0))))
% 0.20/0.54  (declare-fun tptp.ior ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.ior (lambda ((P (-> $$unsorted Bool)) (Q (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mbox_s4 P)) (@ tptp.mbox_s4 Q)) __flatten_var_0))))
% 0.20/0.54  (declare-fun tptp.iimplies ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.iimplies (lambda ((P (-> $$unsorted Bool)) (Q (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mimplies (@ tptp.mbox_s4 P)) (@ tptp.mbox_s4 Q)) __flatten_var_0))))
% 0.20/0.54  (declare-fun tptp.iimplied ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.iimplied (lambda ((P (-> $$unsorted Bool)) (Q (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.iimplies Q) P) __flatten_var_0))))
% 0.20/0.54  (declare-fun tptp.iequiv ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.iequiv (lambda ((P (-> $$unsorted Bool)) (Q (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.iand (@ (@ tptp.iimplies P) Q)) (@ (@ tptp.iimplies Q) P)) __flatten_var_0))))
% 0.20/0.54  (declare-fun tptp.ixor ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.ixor (lambda ((P (-> $$unsorted Bool)) (Q (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.inot (@ (@ tptp.iequiv P) Q)) __flatten_var_0))))
% 0.20/0.54  (declare-fun tptp.ivalid ((-> $$unsorted Bool)) Bool)
% 0.20/0.54  (assert (= tptp.ivalid (lambda ((Phi (-> $$unsorted Bool))) (forall ((W $$unsorted)) (@ Phi W)))))
% 0.20/0.54  (declare-fun tptp.isatisfiable ((-> $$unsorted Bool)) Bool)
% 0.20/0.54  (assert (= tptp.isatisfiable (lambda ((Phi (-> $$unsorted Bool))) (exists ((W $$unsorted)) (@ Phi W)))))
% 0.20/0.54  (declare-fun tptp.icountersatisfiable ((-> $$unsorted Bool)) Bool)
% 0.20/0.54  (assert (= tptp.icountersatisfiable (lambda ((Phi (-> $$unsorted Bool))) (exists ((W $$unsorted)) (not (@ Phi W))))))
% 0.20/0.54  (declare-fun tptp.iinvalid ((-> $$unsorted Bool)) Bool)
% 0.20/0.54  (assert (= tptp.iinvalid (lambda ((Phi (-> $$unsorted Bool))) (forall ((W $$unsorted)) (not (@ Phi W))))))
% 0.20/0.54  (declare-fun tptp.p ($$unsorted) Bool)
% 0.20/0.54  (declare-fun tptp.q ($$unsorted) Bool)
% 0.20/0.54  (assert (let ((_let_1 (@ tptp.iatom tptp.p))) (not (@ tptp.ivalid (@ (@ tptp.iimplies (@ (@ tptp.iimplies (@ (@ tptp.iimplies _let_1) (@ tptp.iatom tptp.q))) _let_1)) _let_1)))))
% 0.20/0.54  (set-info :filename cvc5---1.0.5_31880)
% 0.20/0.54  (check-sat-assuming ( true ))
% 0.20/0.54  ------- get file name : TPTP file name is SYN389^4
% 0.20/0.54  ------- cvc5-thf : /export/starexec/sandbox/solver/bin/cvc5---1.0.5_31880.smt2...
% 0.20/0.54  --- Run --ho-elim --full-saturate-quant at 10...
% 0.20/0.54  % SZS status Theorem for SYN389^4
% 0.20/0.54  % SZS output start Proof for SYN389^4
% 0.20/0.54  (
% 0.20/0.54  (let ((_let_1 (@ tptp.iatom tptp.p))) (let ((_let_2 (not (@ tptp.ivalid (@ (@ tptp.iimplies (@ (@ tptp.iimplies (@ (@ tptp.iimplies _let_1) (@ tptp.iatom tptp.q))) _let_1)) _let_1))))) (let ((_let_3 (= tptp.iinvalid (lambda ((Phi (-> $$unsorted Bool))) (forall ((W $$unsorted)) (not (@ Phi W))))))) (let ((_let_4 (= tptp.icountersatisfiable (lambda ((Phi (-> $$unsorted Bool))) (exists ((W $$unsorted)) (not (@ Phi W))))))) (let ((_let_5 (= tptp.isatisfiable (lambda ((Phi (-> $$unsorted Bool))) (exists ((W $$unsorted)) (@ Phi W)))))) (let ((_let_6 (= tptp.ivalid (lambda ((Phi (-> $$unsorted Bool))) (forall ((W $$unsorted)) (@ Phi W)))))) (let ((_let_7 (= tptp.ixor (lambda ((P (-> $$unsorted Bool)) (Q (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.inot (@ (@ tptp.iequiv P) Q)) __flatten_var_0))))) (let ((_let_8 (= tptp.iequiv (lambda ((P (-> $$unsorted Bool)) (Q (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.iand (@ (@ tptp.iimplies P) Q)) (@ (@ tptp.iimplies Q) P)) __flatten_var_0))))) (let ((_let_9 (= tptp.iimplied (lambda ((P (-> $$unsorted Bool)) (Q (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.iimplies Q) P) __flatten_var_0))))) (let ((_let_10 (= tptp.iimplies (lambda ((P (-> $$unsorted Bool)) (Q (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mimplies (@ tptp.mbox_s4 P)) (@ tptp.mbox_s4 Q)) __flatten_var_0))))) (let ((_let_11 (= tptp.ior (lambda ((P (-> $$unsorted Bool)) (Q (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mbox_s4 P)) (@ tptp.mbox_s4 Q)) __flatten_var_0))))) (let ((_let_12 (= tptp.iand (lambda ((P (-> $$unsorted Bool)) (Q (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand P) Q) __flatten_var_0))))) (let ((_let_13 (= tptp.ifalse (@ tptp.inot tptp.itrue)))) (let ((_let_14 (= tptp.itrue (lambda ((W $$unsorted)) true)))) (let ((_let_15 (= tptp.inot (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ tptp.mbox_s4 P)) __flatten_var_0))))) (let ((_let_16 (= tptp.iatom (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ P __flatten_var_0))))) (let ((_let_17 (= tptp.mbox_s4 (lambda ((P (-> $$unsorted Bool)) (X $$unsorted)) (forall ((Y $$unsorted)) (=> (@ (@ tptp.irel X) Y) (@ P Y))))))) (let ((_let_18 (= tptp.mimplies (lambda ((U (-> $$unsorted Bool)) (V (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot U)) V) __flatten_var_0))))) (let ((_let_19 (= tptp.mand (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (and (@ X U) (@ Y U)))))) (let ((_let_20 (= tptp.mor (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (or (@ X U) (@ Y U)))))) (let ((_let_21 (= tptp.mnot (lambda ((X (-> $$unsorted Bool)) (U $$unsorted)) (not (@ X U)))))) (let ((_let_22 (forall ((X $$unsorted)) (@ (@ tptp.irel X) X)))) (let ((_let_23 (ho_3 k_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_7))) (let ((_let_24 (ho_4 _let_23 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_7))) (let ((_let_25 (forall ((Y $$unsorted)) (not (ho_4 (ho_3 k_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_7) Y))))) (let ((_let_26 (forall ((X $$unsorted)) (ho_4 (ho_3 k_2 X) X)))) (let ((_let_27 (forall ((u |u_(-> $$unsorted Bool)|) (e Bool) (i $$unsorted)) (not (forall ((v |u_(-> $$unsorted Bool)|)) (not (forall ((ii $$unsorted)) (= (ho_4 v ii) (ite (= i ii) e (ho_4 u ii)))))))))) (let ((_let_28 (forall ((x |u_(-> $$unsorted Bool)|) (y |u_(-> $$unsorted Bool)|)) (or (not (forall ((z $$unsorted)) (= (ho_4 x z) (ho_4 y z)))) (= x y))))) (let ((_let_29 (forall ((u |u_(-> $$unsorted $$unsorted Bool)|) (e |u_(-> $$unsorted Bool)|) (i $$unsorted)) (not (forall ((v |u_(-> $$unsorted $$unsorted Bool)|)) (not (forall ((ii $$unsorted)) (= (ho_3 v ii) (ite (= i ii) e (ho_3 u ii)))))))))) (let ((_let_30 (forall ((x |u_(-> $$unsorted $$unsorted Bool)|) (y |u_(-> $$unsorted $$unsorted Bool)|)) (or (not (forall ((z $$unsorted)) (= (ho_3 x z) (ho_3 y z)))) (= x y))))) (let ((_let_31 (EQ_RESOLVE (ASSUME :args (_let_22)) (PREPROCESS :args ((= _let_22 _let_26)))))) (let ((_let_32 (AND_ELIM (MACRO_SR_PRED_TRANSFORM (AND_INTRO _let_31 (PREPROCESS :args ((and _let_30 _let_29 _let_28 _let_27)))) :args ((and _let_26 _let_30 _let_29 _let_28 _let_27))) :args (0)))) (let ((_let_33 (_let_26))) (let ((_let_34 (forall ((BOUND_VARIABLE_1300 $$unsorted)) (or (not (ho_4 (ho_3 k_2 BOUND_VARIABLE_1300) BOUND_VARIABLE_1300)) (ho_4 k_5 BOUND_VARIABLE_1300))))) (let ((_let_35 (not _let_34))) (let ((_let_36 (or _let_35 (not (ho_4 (ho_3 k_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9)) (not (ho_4 (ho_3 k_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_10) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_10)) (ho_4 k_6 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_10)))) (let ((_let_37 (not _let_25))) (let ((_let_38 (forall ((BOUND_VARIABLE_1360 $$unsorted)) (or (not (ho_4 (ho_3 k_2 BOUND_VARIABLE_1360) BOUND_VARIABLE_1360)) (ho_4 k_5 BOUND_VARIABLE_1360))))) (let ((_let_39 (not _let_38))) (let ((_let_40 (and _let_36 _let_39 _let_37))) (let ((_let_41 (ho_4 k_5 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8))) (let ((_let_42 (ho_4 (ho_3 k_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8))) (let ((_let_43 (not _let_42))) (let ((_let_44 (or _let_43 _let_41))) (let ((_let_45 (not _let_44))) (let ((_let_46 (or _let_40 (not (ho_4 _let_23 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8)) _let_41))) (let ((_let_47 (forall ((W $$unsorted) (BOUND_VARIABLE_1415 $$unsorted) (BOUND_VARIABLE_1408 $$unsorted) (BOUND_VARIABLE_1401 $$unsorted)) (or (and (or (not (forall ((BOUND_VARIABLE_1300 $$unsorted)) (or (not (ho_4 (ho_3 k_2 BOUND_VARIABLE_1300) BOUND_VARIABLE_1300)) (ho_4 k_5 BOUND_VARIABLE_1300)))) (not (ho_4 (ho_3 k_2 BOUND_VARIABLE_1408) BOUND_VARIABLE_1408)) (not (ho_4 (ho_3 k_2 BOUND_VARIABLE_1401) BOUND_VARIABLE_1401)) (ho_4 k_6 BOUND_VARIABLE_1401)) (not (forall ((BOUND_VARIABLE_1360 $$unsorted)) (or (not (ho_4 (ho_3 k_2 BOUND_VARIABLE_1360) BOUND_VARIABLE_1360)) (ho_4 k_5 BOUND_VARIABLE_1360)))) (not (forall ((Y $$unsorted)) (not (ho_4 (ho_3 k_2 W) Y))))) (not (ho_4 (ho_3 k_2 W) BOUND_VARIABLE_1415)) (ho_4 k_5 BOUND_VARIABLE_1415))))) (let ((_let_48 (not _let_46))) (let ((_let_49 (not _let_47))) (let ((_let_50 (ASSUME :args (_let_21)))) (let ((_let_51 (ASSUME :args (_let_20)))) (let ((_let_52 (ASSUME :args (_let_19)))) (let ((_let_53 (EQ_RESOLVE (ASSUME :args (_let_18)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_52 _let_51 _let_50) :args (_let_18 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_54 (EQ_RESOLVE (ASSUME :args (_let_17)) (MACRO_SR_EQ_INTRO :args (_let_17 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_55 (ASSUME :args (_let_16)))) (let ((_let_56 (EQ_RESOLVE (ASSUME :args (_let_15)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_55 _let_54 _let_53 _let_52 _let_51 _let_50) :args (_let_15 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_57 (EQ_RESOLVE (ASSUME :args (_let_14)) (MACRO_SR_EQ_INTRO :args (_let_14 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_58 (EQ_RESOLVE (ASSUME :args (_let_13)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50) :args (_let_13 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_59 (EQ_RESOLVE (ASSUME :args (_let_12)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50) :args (_let_12 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_60 (EQ_RESOLVE (ASSUME :args (_let_11)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50) :args (_let_11 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_61 (EQ_RESOLVE (ASSUME :args (_let_10)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50) :args (_let_10 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_62 (EQ_RESOLVE (ASSUME :args (_let_9)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50) :args (_let_9 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_63 (EQ_RESOLVE (ASSUME :args (_let_8)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50) :args (_let_8 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_64 (EQ_RESOLVE (ASSUME :args (_let_2)) (TRANS (MACRO_SR_EQ_INTRO (AND_INTRO (ASSUME :args (_let_3)) (EQ_RESOLVE (ASSUME :args (_let_4)) (MACRO_SR_EQ_INTRO :args (_let_4 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_5)) (MACRO_SR_EQ_INTRO :args (_let_5 SB_DEFAULT SBA_FIXPOINT))) (ASSUME :args (_let_6)) (EQ_RESOLVE (ASSUME :args (_let_7)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50) :args (_let_7 SB_DEFAULT SBA_FIXPOINT))) _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50) :args (_let_2 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (not (forall ((W $$unsorted) (BOUND_VARIABLE_1415 $$unsorted) (BOUND_VARIABLE_1408 $$unsorted) (BOUND_VARIABLE_1401 $$unsorted)) (or (and (or (not (forall ((BOUND_VARIABLE_1300 $$unsorted)) (or (not (@ (@ tptp.irel BOUND_VARIABLE_1300) BOUND_VARIABLE_1300)) (@ tptp.p BOUND_VARIABLE_1300)))) (not (@ (@ tptp.irel BOUND_VARIABLE_1408) BOUND_VARIABLE_1408)) (not (@ (@ tptp.irel BOUND_VARIABLE_1401) BOUND_VARIABLE_1401)) (@ tptp.q BOUND_VARIABLE_1401)) (not (forall ((BOUND_VARIABLE_1360 $$unsorted)) (or (not (@ (@ tptp.irel BOUND_VARIABLE_1360) BOUND_VARIABLE_1360)) (@ tptp.p BOUND_VARIABLE_1360)))) (not (forall ((Y $$unsorted)) (not (@ (@ tptp.irel W) Y))))) (not (@ (@ tptp.irel W) BOUND_VARIABLE_1415)) (@ tptp.p BOUND_VARIABLE_1415)))) _let_49))))))) (let ((_let_65 (or))) (let ((_let_66 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE _let_64) :args (_let_49))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_49) _let_47))) (REFL :args (_let_48)) :args _let_65)) _let_64 :args (_let_48 true _let_47)))) (let ((_let_67 (_let_34))) (let ((_let_68 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_67) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((not (= (ho_4 k_5 BOUND_VARIABLE_1300) true))))) :args _let_67)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_44)) :args ((or _let_41 _let_43 _let_45))) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_46 2)) _let_66 :args ((not _let_41) true _let_46)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_31 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8 QUANTIFIERS_INST_CBQI_CONFLICT)) :args _let_33)) _let_32 :args (_let_42 false _let_26)) :args (_let_45 true _let_41 false _let_42)) :args (_let_35 true _let_44)))) (let ((_let_69 (not _let_36))) (let ((_let_70 (_let_40))) (let ((_let_71 (_let_25))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_71) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_7 QUANTIFIERS_INST_CBQI_CONFLICT)) :args _let_71)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_AND_NEG :args _let_70) (CONG (REFL :args _let_70) (REFL :args (_let_69)) (MACRO_SR_PRED_INTRO :args ((= (not _let_39) _let_38))) (MACRO_SR_PRED_INTRO :args ((= (not _let_37) _let_25))) :args _let_65)) :args ((or _let_38 _let_25 _let_40 _let_69))) (MACRO_RESOLUTION_TRUST (EQUIV_ELIM1 (SYMM (ALPHA_EQUIV :args (_let_34 (= BOUND_VARIABLE_1300 BOUND_VARIABLE_1360))))) _let_68 :args (_let_39 true _let_34)) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_46 0)) _let_66 :args ((not _let_40) true _let_46)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_36 0)) (CONG (REFL :args (_let_36)) (MACRO_SR_PRED_INTRO :args ((= (not _let_35) _let_34))) :args _let_65)) :args ((or _let_34 _let_36))) _let_68 :args (_let_36 true _let_34)) :args (_let_25 true _let_38 true _let_40 false _let_36)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_31 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_7 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((ho_3 k_2 X)))) :args _let_33)) _let_32 :args (_let_24 false _let_26)) :args (false false _let_25 false _let_24)) :args (_let_22 (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (let ((_let_1 (@ tptp.irel X))) (=> (and (@ _let_1 Y) (@ (@ tptp.irel Y) Z)) (@ _let_1 Z)))) _let_21 _let_20 _let_19 _let_18 _let_17 _let_16 _let_15 _let_14 _let_13 _let_12 _let_11 _let_10 _let_9 _let_8 _let_7 _let_6 _let_5 _let_4 _let_3 _let_2 true))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
% 0.20/0.54  )
% 0.20/0.54  % SZS output end Proof for SYN389^4
% 0.20/0.54  % cvc5---1.0.5 exiting
% 0.20/0.55  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------